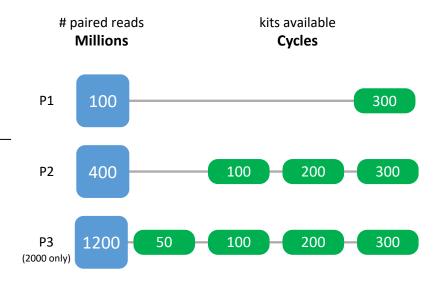

NextSeq[™] 1000 & 2000

Russ Carmical, PhD **Executive Sequencing Specialist** Illumina

Illumina Sequencing Instruments

NextSeq 1000/2000

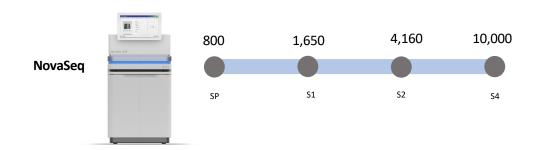


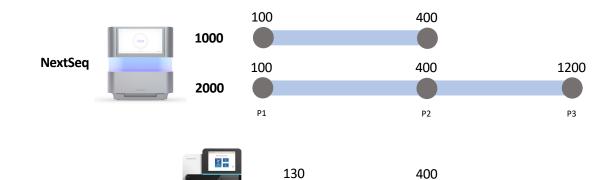
Features

- NextSeq 2000: P1/P2/P3 Flowcells
- NextSeq 1000: P1/P2 Flowcells
- 2-color SBS chemistry
- Patterned Flowcell/ExAmp
- Onboard DRAGEN™ Bio-IT Platform
- Introduced in 2020

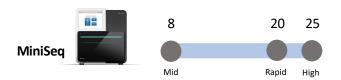
Key Applications

- RNA seq
- Single Cell Applications
- Human Exomes
- Targeted regions
- Multiomics





Output



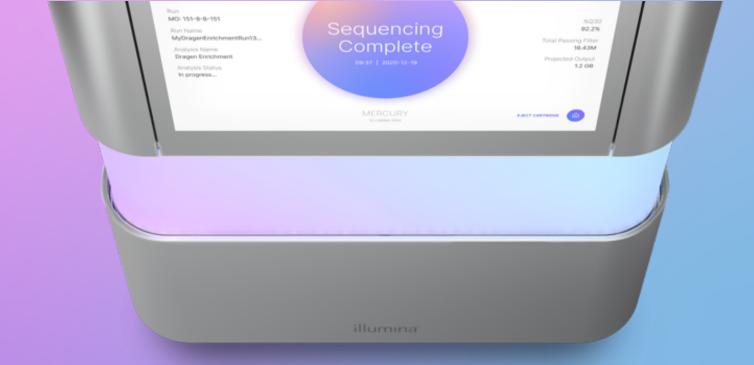
High

Micro

v2

v3

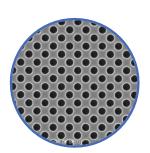
Clusters in Millions



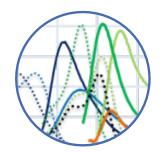
Nano

Ultra high-density flow cells enable significant performance gains and tunable outputs

> 75 Breakthrough Innovations deliver meaningful benefits


3 Key technologies enable > 30× increase in data density

NextSeq 500

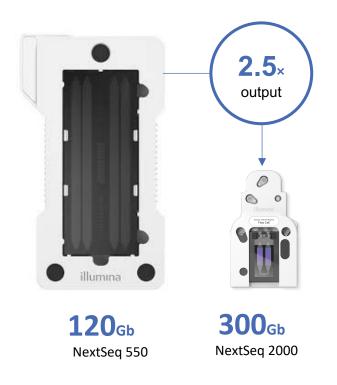

HO Flow Cell

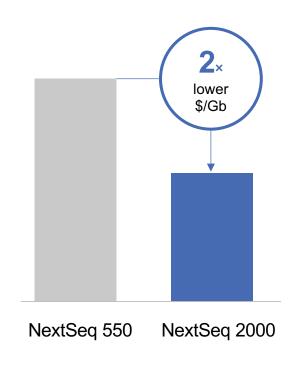
Patterned Flow Cell

Blue, 2-Channel SBS

Super-Resolution Optics

NextSeq 2000


P3 Flow Cell



~6250K

~200K

Major increase in density translates to less waste, less complexity and more value per run compared to NextSeq 550

Major reductions in cost, storage, and waste.

Miniaturization reduces reaction volumes, which reduces cost and waste

~30% reduction in number of reagents further reduces size and simplifies design

Results in an integrated cartridge with single storage condition

Design allows recyclable parts to be separated from liquid waste

NextSeq 1000 and NextSeq 2000 are the first systems to integrate DRAGEN Bio-IT platform on board

DRAGEN Bio-IT platform:

- Fast
- Accurate
- Cost efficient
- Industry standard pipelines
- Great for both novice and expert users.
- 3× Reduction in touch points
- 6× Faster on-board secondary analysis

We've touched every part of the workflow to make Illumina's most userfriendly system ever

Plan

Streamlined Run Planning
Flexible Modes of Operation

Sequence

Integrated DRAGEN
Fast Analysis in Parallel

Analyze

Automated, Turnkey Solutions
Onboard and Cloud Pipelines

DRAGEN™ is Hardware-Accelerated Secondary Analysis

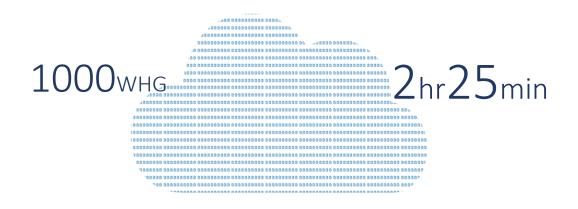
Dynamic Read Analysis for GENomics

DRAGEN Hardware Acceleration Field Programable Gate Array (FPGA)

DRAGEN

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured manufacturing – hence the term "field-programmable".

FPGA latencies are an order of magnitude less **than** that of **GPUs** – hundreds of nanoseconds vs. single-digit microseconds.


Record-Breaking Analysis Speed

Guinness World Records® Fastest Genetic Diagnosis

Guinness World Records®
Fastest Analysis of 1,000 Genomes

In 2018, Rady Children's Institute for Genomic Medicine set the Guinness World Records® for Fastest Genetic Diagnosis leveraging the Illumina DRAGEN Bio-IT Platform.

In 2017, Children's Hospital of Philadelphia (CHOP) set the Guinness World Records® for Fastest Analysis of 1,000 Genomes using the Illumina DRAGEN Bio-IT Platform in the cloud.

Accurate Data

Detects small variants, copy number variants and structural variants with **high analytical sensitivity** and **specificity**

DRAGEN identified all 50 hidden variants and ranked 1st in the following categories*

Hidden	Indel	Indel	Indel F-Score	SNP	SNP
Variants	Precision	Recall		F-score	Recall
50/50	1 st				

^{*} Amongst entries that identified all hidden variants

Translating Sequencing Data into Insights

Unlocking the Power of the Genome through Secondary Analysis

Library Prep

Sequencing

Secondary Analysis

Processing raw sequencing data:

- Demultiplexing (BCL > FASTQ)
- Read Mapping & Alignment (FASTQ>BAM)
- Variant Calling (BAM > VCF)

Tertiary Analysis

Key DRAGEN Applications

	DRAGEN On-Premise Server	BaseSpace	Illumina Connected Analytics	NextSeq 1000/2000
Demultiplexing (BCL Convert)	✓	~	~	✓
DRAGEN ORA lossless genomic compression	~			~
Map & Align	~	✓	✓	✓
Whole genome (germline & somatic)	✓	~	✓	Germline only
Exome enrichment (germline & somatic)	~	~	~	~
COVIDSeq	✓	~		
RNA Pathogen Detection		~		
RNA-Seq (gene fusion & quantification)	~	~	~	~
Single-Cell RNA	✓		~	✓

NextSeq 1000 & 2000 provide customers significant reduction in running costs

Kit	List	\$/G	\$/M Read	\$/G Reduction vs NSQ 550	
P2 100 cycles (40G)	\$1420	\$35.50	\$3.55	34%	
P2 200 cycles (80G)	\$2670	\$33.38	\$6.68	35%	
P2 300 cycles (120G)	\$3540	\$29.50	\$8.85	29%	
P3 100 cycles (100G)	\$3250	\$32.50	\$3.25	40%	
P3 200 cycles (200G)	\$5750	\$28.75	\$5.75	44%	
P3 300 cycles (300G)	\$6000	\$20.00	\$6.00	52%	

Reduction in Running Costs

- Enabled by new, exclusive NextSeq 1000 and NextSeq 2000 technologies
- Enables benefits for current and emerging applications
- Additional efficiencies afforded when scaling from NextSeq 1000/2000
 P2 Reagents and NextSeq 2000
 P3 Reagents
- Clear ROI path for majority of existing NextSeq customers
- Standard sales discounting to apply

Key Applications

Targeted regions

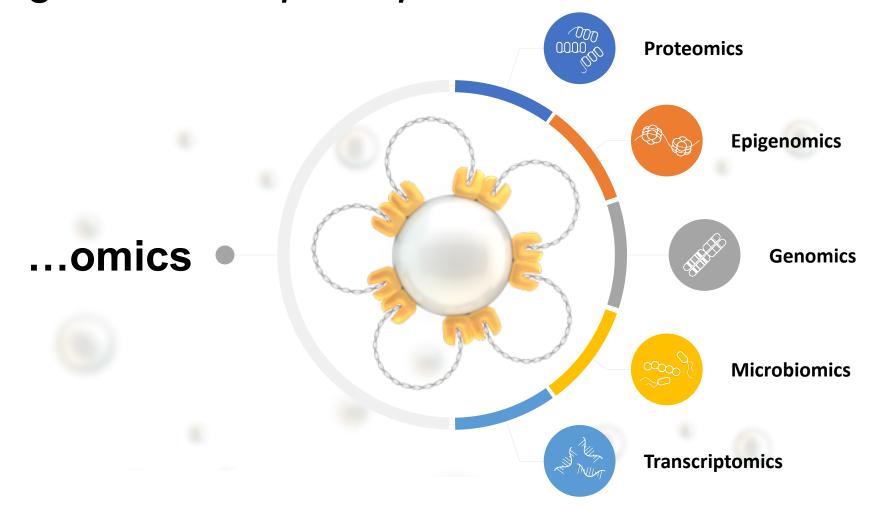
Small genomes (Bacteria, virus)

RNA sea

Human Exomes

Human Genomes

Enabling advances in science; Key applications


Single Cell applications

Multi-omic approaches

Spacial Genomics

Multi-Omics Approaches Answering more complex questions

RNA-Seq

Total RNA Seq - Analyze coding plus multiple forms of noncoding RNA for a comprehensive picture of the transcriptome.

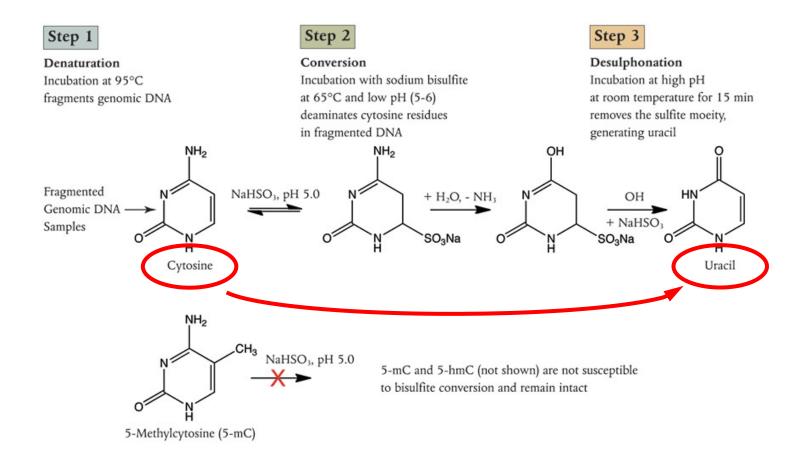
mRNA-Seq -Quantify gene expression of both known and novel transcript isoforms.

Targeted RNA Seq - Select and sequence specific transcripts of interest for gene expression profiling studies.

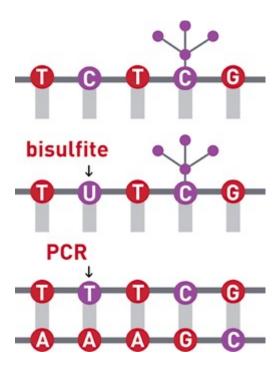
RNA-Seq Workflows: Technology Overview

	Total	mRNA	Enrichment
RNA Selection / Depletion	rRNA Depletion by RNaseH	Poly-A Capture AAAAA mRNA	None
Library Prep	Y-adapter Ligation	Y-adapter Ligation	BLT
Enrichment	None	None	1-Hyb
Stranded	Yes	Yes	No
Indexes	192/384 UDI	384 UDI	384 UDI

RNA-seq on NextSeq[™] 2000 System: Access multiple applications

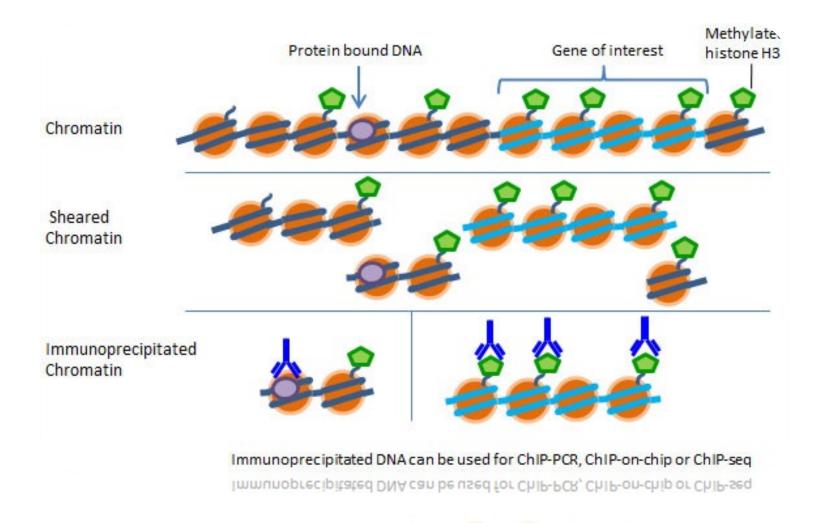

	NextSeq 1000/2000 with P2 Flow Cell 400M Reads		NextSeq 2000 with P3 Flow Cell 1000M Reads		
	TruSeq [™] n	nRNA Stranded	TruSeq™ mRNA Stranded		
Gene Expression Profiling	40 SAMPLES	10m	100 SAMPLES	10m READS	
	TruSeq™ RNA Access		TruSeq™ RNA Access		
Coding RNA Discovery	16 SAMPLES	25m	40 SAMPLES	25m	
Coding and Non-Coding	TruSeq™ Str	randed Total RNA	TruSeq™ Str	anded Total RNA	
Discovery	8 SAMPLES	50m	20 SAMPLES	50m READS	

Methyl-Seq


Methylation sequencing is a powerful tool for understanding genome-wide methylation with single nucleotide resolution and is considered a gold standard.

Methyl-Seq:: Technology Overview

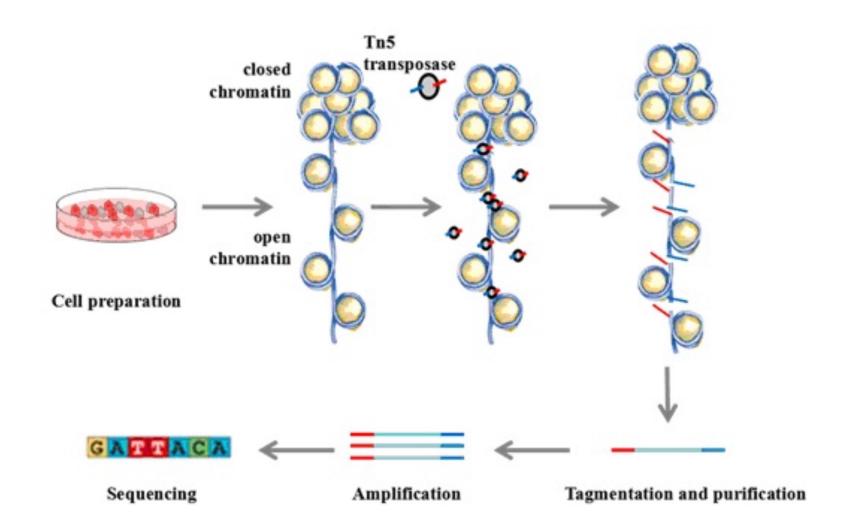
Methyl-Seq:: Technology Overview



ChIP-Seq

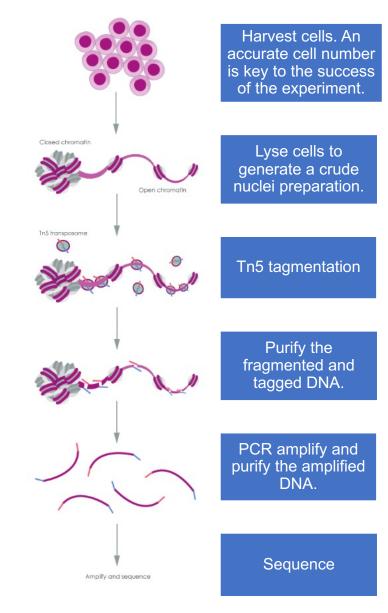
Chromatin immunoprecipitation sequencing (ChIP-Seq) is a powerful method for analyzing DNA-protein interactions and performing genome-wide surveys of gene regulation.

ChIP-Seq:: Technology Overview



ATAC-Seq

The assay for transposase-accessible chromatin with sequencing (ATAC-Seq) is a popular method for determining chromatin accessibility across the genome.



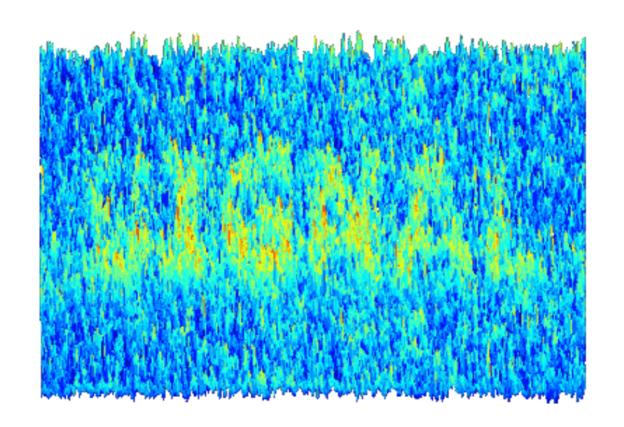
ATAC-Seq: : Technology Overview

ATAC-Seq: : Technology Overview

- Easy, 3 hour workflow
- Requires least amount of cells compared to other methods
- Number of reads for a region correlates with how open that chromatin is at a single nucleotide resolution.

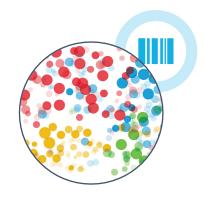
How many ATAC-seq samples can you pool in a run?

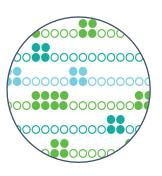
Application	# Reads/Sample	P3	
Nucleosome mapping	50 million	4.0	20
Inferring differences in oper chromatin (human)	n >50 million	<4.0	<20
Transcription factor foot-printing	200 million	2.0	5.0


Single Cell Sequencing

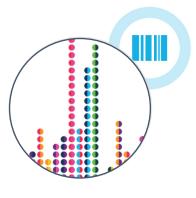
scRNA-Seq - provides transcriptional profiling across thousands of cells within a heterogeneous sample.

scATAC-Seq - identifies areas of open chromatin at single cell resolution such that when examining a heterogenous cell population


Purpose of Single Cell Experiment?


10x Genomics Solutions

Gene Expression 3' RNAseq


Single Cell
Gene Expression
VERSION 3

Epigenomics

Single Cell ATAC

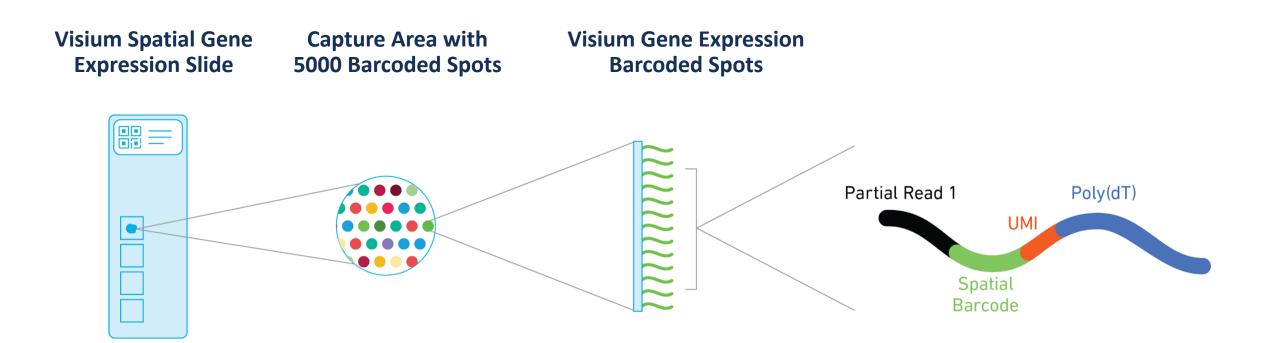
Immunology 5' V(D)J

Single Cell Immune Profiling

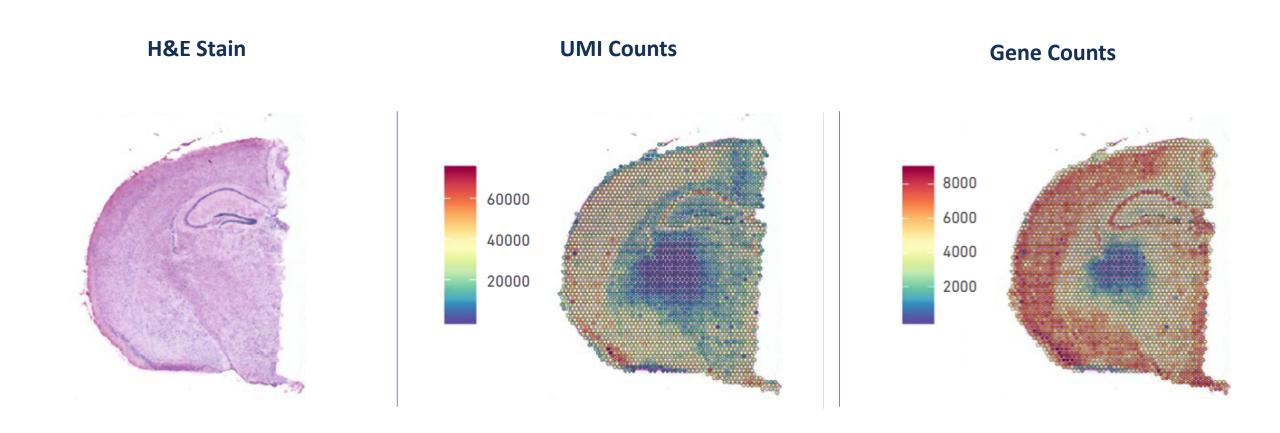
Single Cell on NextSeq[™] 2000 System: Access multiple applications

	NextSeq 1000/2000 with P2 Flow Cell 400M Reads			NextSeq 2000 with P3 Flow Cell 1000M Reads		
5' TCR/BCR	25 SAMPLES	3k	5k READS/CALLS	65 SAMPLES	3k CELLS	5k reads/calls
3' Gene Expression Profiling	7 SAMPLES	3k	20k READS/CALLS	17 SAMPLES	3k	20k READS/CALLS
scATAC	3 SAMPLES	3k	50k READS/CALLS	7 SAMPLES	3k	50k READS/CALLS

For Research Use Only. Not for use in diagnostic procedures.

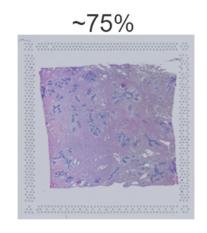

Spacial Genomics

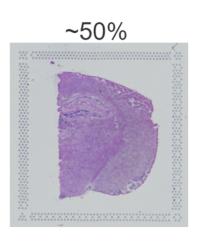
Spatial transcriptomics - a molecular profiling method that allows scientists to measure all the gene activity in a tissue sample and map where the activity is occurring.



Spatial Transcriptomics: : Technology Overview

Utilizing Poly A Capture and Unique Spatial Barcodes


Spatial Transcriptomics: : Technology Overview



Determining Sequencing Depth

Visium Spatial Gene Expression Libraries

- Starting point: 50K reads/clusters per tissue covered spot
- Total sequencing depth = (Coverage Area x total spots on the Capture Area) x 50,000 read pairs/spot
- **Example calculation for 60% tissue coverage**: $(0.60 \times 5,000 \text{ total spots}) \times 50,000 \text{ read pairs/spot} = 150 \text{ million total read pairs for that sample}$
- Note: calculation is only 1 of the 4 capture areas on the Visium slide

